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Variational methods play an important part in the solution of nonlinear 
problems of stability. 

Numerous approximate solutions have been obtained for nonlinear sta- 

bility. In the qualitative aspects they do not. as a rule, raise any 
doubts. Using variational methods, it is usually possible to establish 
the existence of critical states and the non-uniqueness of the forms of 
equilibrium. In the quantitative estimates, however, the results ob- 
tained for nonlinear regions differ considerably. depending on the method 
of analysis and the procedure for approximation. This can be explained 
by the fact that, at large displacements, the shape of the deformed sur- 
face of a shell changes so much that it cannot be described by functions 
containing only one, or even two, variable parameters. 

Introduction of a larger number of parameters causes serious com- 
putational difficulties. The problem leads, as a rule, to the solution 
of a system of cubic equations, whose number is equal to the number of 
variable parameters. The analysis of possible forms of equilibrium re- 
quires the determination of the real roots of these equations depending 
on external forces. In practice, this problem proves to be so cumbersome 
that it is necessary to assume only one or, at most, two variable para- 
meters. Sometives it is possible to introduce a larger number of para- 
meters. This can be achieved usually in the cases where some of the 
equations prove to be linear or are artificially linearized. ESPeCiallY 
difficult are investigations of systems subjected to several independ- 
ently varying forces. 
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The technical aspect of the problem is to some extent simplified if 
high-speed electronic digital computers are used. Nevertheless, a sig- 
nificant step toward the increase of the number of variable parameters 
has yet to be made. 

In the following, a possibility is considered of increasing the 

number of variable parameters and developing most efficient methods of 
solution. not in the sense of formal convergence, but of practical use- 
fulness. 

The effectiveness of an approximate method may be evaluated by com- 
paring with the exact solution. Since, at the present time, exact solu- 
tions of nonlinear problems of the theory of shells are not available, 
the first part of this paper deals with the problem of axially-symmetric 
bending of a shallow spherical dome. It is solved by a numerical method 
and the obtained solution is assumed as the standard. 

It will be assumed that the use of electronic digital computers is 

an organic part of the work. The algorithm of computation is given. 

1. 'Ihe equations for a shallow spherical shell t~l, subjected to a 
uniform pressure p acting on the convex side, have the foxm 

(1.0 

Here, p is the dimensionless radius, which will be assumed as the 
independent variable; r is the running radius; a is the radius of the 
outer contour (Fig. 1); T, is the radial tensile force; h is the thick- 
ness of the shell; 6 is the angle of rotation of the nor&; ek is the 
slope of the undefoxmed shell at r = a. 

Introducing the rise of the dome fil as a parameter, we transform the 
equations to the following form 

pY”-+ Y+- =e($&++e) 

pe~+fy+ - 12 (1 +)Y(%P+~)+ 6 0 -P’)POP’ (9.3) 

where 

‘Ihe axial displacement, w is 
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We introduce the notation 

V. 1. Feodos ‘ev 

‘(I .4) 

8’ = u, Y’ = v (1.5) 

and we rewrite equation (1.2) in finite differences 

A@ = uAp, A’4 = vAp (1.6) 

Av = 
( 

-$+f+F@+;F)Ap 

Au = 
( 

- $+ + - 10.92 2+ ‘I! - 10.92?+ 5.46~~~) Ap 

(1.7) 

Ilere and in the following we assume ~1 = 0.3. 

For p = 0, the functions 0 and ‘i’ become equal to zero. 

Having given the values u = u,, and v = v,,, we find A0 and A‘t’ from 

equations (1.6), and then we determine Au and Au from equations (1.7). 

Adding the increments of the functions to the preceding values, we con- 

tinue the integration procedure 

up to the value:p = 1. On the 

contour, the conditions of fully 

fixed edges are to be satisfied, 

8, i.e. epZ1 = 0 and 

Fig. 1. 
Zk = z,=, = Y’ - I” f IQ_ = 0 I 

‘Ihe second condition means 

that the radial displacement vanishes. 

In order to satisfy these two conditions it is necessary to deter- 

mine the corresponding quantities u0 and vO. This is accomplished by 

successive integrations of equations (1.7): and analysis of the result- 

ing quantities OpZl = 8, and ZpZ1 = Zk. 

At first, to obtain a rough estimate, for the given values of the 

parameters 2H/h and p. we perform many integrations for various values 

of u0 and vO. In this way we obtain two curves in the u,,u,,-plane (Fig. 

2). One of these curves corresponds to the values of u,, and u0 for 
which the first boundary condition (Ok = 0) is-satisfied; the second 

curve corresponds to the condition a?, = 0. The points of intersection 
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of the two curves give the sought values of u0 and uO. ‘Ihe number of the 

points of intersection is equal to the number of the forms af equilibrium 

for a given pressure PO. In Fig. 2, these points are denoted by 1, 2 and 

3, in the planes of the variables u,,, va and p,,, ~“/h. 

‘Ike refined values of I+, and v,, for each form of equilibrium may be 

found by successive linear interpolations. 

Let us select, for example, in the vicinity of the point 1 three 

arbitrary points ,I, B and C (Fig. 3). Integrating equations (1.7) we 

find 0, and Z, for each of these points. Ifaving three values 8, and 

three values Z,, 

Z&)’ 

we can construct two planes, 0, = Bk(uo, us) and Zk = 

u,,). The point of intersection of the planes 0, and Zk with the 

coordinate plane is the first approximation 1’ to the sought point 1. 

Next, we move the point A to the point 1’ and reduce Au, and AU, several 

times, and we continue the process of iteration until the differences 

between the coordinates of two successive approximations becomes smaller 

than a given value. 

In the performed calculations this difference was equal to 0.0001, 

which represents about 0.01% of the corresponding values of uc and v,,. 
The intervals of integration were equal to 0.01 for the preliminary cal- 
culations, and equal to 0.001 for the refined calculations. At the 

boundary of the shell, where the curvature changes rapidly, the inter- 
vals were reduced to 0.0001. Further reduction of the intervals is of no 
practical effect. 

In order to avoid a complicated investigation of the u,,uO-plane, the 

point 1 was determined for the increasing values of p,,, starting with 

PO = 0. 
Y 

As PO changes, the point 1 moves. If the parameter p,, 
by a small value, the point 1 does not move considerably 

followed up by the above method of linear interpolation. 
the locations of the points 1, 2 and 3 in the plane u,,uO 

as functions of po. 

is increased 

and can be 

In this way, 
are determined 
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Near the critical states, the points 1 and 2 (or 2 and 3) approach 
each other and, finally, coincide. ‘Ihe linear interpolation becomes then 
inefficient and we resort to the quadratic interpolation. In the region 
where the points 1 and 2 (or 2 and 3) are close, a “trap” is constructed 
using nine points (Fig. 4). ‘Ihe curves 8 - 0 and .?, = 0 become second- 

order parabolis- . Varying the quantities u0 

% 
and v0 and the values of the parameter pot 
and using the criterion of multiple roots, it 
is possible to determine the upper and lower 
critical pressures. 

l’he loci of the points in the uaua-plane 
are shown in Fig. 5, and the relation between 

ll 
the pressure p0 and the deflection w,/h is 

t shown in Fig. 6. 

Fig. 4. Varying the parameter 2H/h and using a 
nine point “trap” in the plane uau,,, we can 

determine the relation between the critical pressure and the rise of 
the dome (Fig. 7). 

Drring final stages of the preparation of this paper, [21 was 
published with the solution of the same problem by a different algo- 
rithm. Both results coincide. 

2. We note the following essential property characterizing the 

majority of the problems of a similar type. It is evident that, during 
large deflections, the form of 
the elastic surface of the 
shell is subjected to consider- 
able changes which cannot be 
taken into account by one or 
two parameters used in the 
approximating functions. 

In the case of a shallow 
spherical shell, this point 
may be demonstrated by assum- 

ing, as the first approxima- 
tion, the deflections in the 
same form as for a circular 
plate 

W 
-&(I-p2)2 
h 

(2.1) 

where C is the only variable parameter. 

Fig. 5. 
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I!sing the energy method or rtalerkin’s method, the critical relation 

between pressure and deflection may be obtained. Comparison of the dia- 
grams (Fig. 8) obtained earlier in [3] and the results of the numerical 
analysis (continuous lines in Fig. 8) shows that, in this case, the 
variation of solely one parameter gives a sufficient accuracy only for 
the domes with relatively small rise If. For the rise N = 4h, the dis- 
crepancy in the magnitudes of critical pressures proves to be so large 
that the approximate solution loses any significance. 

This discrepancy can be explained by the fact that the function 
(2.1) does not reflect the actual form of the elastic surface of a shell. 
‘lhe curves shown in Fig. 5 indicate that for the rise H > 4.5h the 
quantity u0 assumes positive values. ‘Ihis means that, in the first stage 

of leading, the curvature of the dome increases in the center, and the 
elastic line of the meridional arc (Fig. 9) has the shape of the curve 
(I, which is considerably different from the curve b given by the ex- 
pression (2.1). The existence of the central convexity is reflected in 

the configuration of the 

50 curves in Fig. 10, which give 
the relation between pa and 

40 tue/h for relatively large 

-30 

0 2 4 

Fig. 6. 

6 6 

Fig. 7. 

values H/h. The center of the shell moves initially in the direction of 
loading, and then a small reverse displacement appears. In certain 
intervals of pO there are not three but five forms of equilibrium (the 
extreme right-hand branch is not shown in Fig. 10). For still larger 
values, the development of new forms of equilibrium is possible. lt is 
obvious that these phenomena cannot be included within the scope of the 
first approximation with one parameter. The use of a larger number of 
parameters meets unmanageable computational difficulties. 

In the example considered, there is no need to resort to higher 

approximations, and to approximate solutions in general, because we have 
the exact solution. However, the numerical solutions of the problems of 
similar type can be expected only in the cases of ordinary differential 
ecuat ions, while the majority of more important and interesting problems 
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of stability of shells reduces to the solution of partial differential 

equations, where the use of digital computers proves to be ineffective. 

The question arises, what should 

be done in more complicated problems 

In particular, how to approach the 

h ., 
Fig. 8. Fig. 9. 

same problem of a spherical dome, but for the conditions of unsym- 

metrical forms of instability. 

Up to date, in many papers the attempt has been made to use a digital 

computer for the solution of problems by the variational method and, 

thus, to increase the number of variable parameters. In this, the usual 

Fig. 11. 
Fig. 10. 

Such a method, however, does not give significant results. The solu- 

approach is maintained, but the com- 

putational possibilities are en- 

1 arged. 

tion reduces again to a system of complicated, non1 inear algebraic equa- 

tions. The construction of an algorithm for their solution (with the 

non-uniqueness taken into account) represents often an insoluble problem. 

The analysis of the process in time proves to be a more efficient 

approach to the solution of similar problems. The introduction of one 

more independent variable (time) for the investigation of statically 
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loaded systems leads, paradoxically, not to 

simplification of the problem, provided the 

are properly utilized. 
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a complication, but to a 

computational techniques 

We shall consider again a shallow spherical shell, and with this ex- 

ample we shall explain the above statement. 

3. We shall limit ourselves (for the sake of simplicity) to the sym- 

metrical forms of deformation of the shell. We rewrite equations (1.2) 

introducing the inertial forces and the terms of linear damping 

PY+Y+ =0(%,+$0) (3.1) 

P0~~+0’-$=-12(1-p2)Y(~P+0)+6(1-~2)p~P2+ 

P 

+ x \ Wpdp + 12 (1 - p”) 5 +QPdP (3.2) 

0 0 

z=t $ 
v- 

(3.3) 

Here, W = w/p represents the dimensionless axial displacement, K is 

a certain, as yet undetermined coefficient of damping, y is the specific 

weight of the material of the shell. The dots denote differentiation 

with respect to the dimensionless time T. We assume that 

W = A,W, + A,W, + A&V, 

where A,, A,, A, are certain parameters depending on time 

W, = (1 - $)a, W2 = (1 - p2)2(1 - 6p2) 

W, = (1 - p2)%(1 - 14ps + 28p’) 

(3.4) 

(3.5) 

The curves corresponding to these functions are shown in Fig. 11. 

The function 0 is defined as the derivative of IV, i.e. 

0 = A1O, + A,0, + A&, 

6, = 4 (- P + P”), 92 = 4 (- 4p + 13ps - 9p5) 

0 s = 4 (- 8p + 57p3 - 105~~ + 56~‘) 

From equation (3.1) we find 

(3.6) 

(3.7) 

Y= y (A,v, + ~42’42 + by,) + A,2Y,, i- A,2’422 + 

+ h2Y2, 4 AJ2Yl2 + 4A,Y,, + A,&Y2s 

Yy, = 4 
( 
a,p -$P” -t&P”) 
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Y2 = 4 I Q2p-~$3+~+~p') 

\ys = 4 (Q,p - p3 + $ p6 - $ p7 + $ p”) 

Yll = 8(Q,,P+$P’-+P”++P’) 

Y 22=8 Q~~p+2p3-~p6+~P7-~p8+~p11) 
( 

Y 33 = 8 
t 
a,,p + 8p3 - 38ps + Tp’ - z p* + 3 p” - 7Op’a + 14~~~) 

Y 12 = 16 
( 
Q,,p + + p3 -z p6 + +- p7 - + p”) 

Y,s = 16 
( 
Q13p + p3 - g p’ + + p7 - + pa + $- p”) 

Y 23 =I 16 Q2,p+4P8-~~6+~P7-~p9+~~11-3p18) 

The constants nl, a2, as, alI, ..*, are determined by the condition 

I Yy&+l =o 
P==l 

Substituting the expressions (3.6) and (3.7) for 0 and Y into equa- 
tion (3.21, multiplying all the terms by Q,, 8, and O,, and integrating 
with respect to p from 0 to 1, we obtain the following three equations 

k’, + x& + L, (Al, A,, As) = 0 

A’, + 4 + L, (Al, Aa, A,) = 0 (3.8) 

& + xk, + La (A,, A27 A,) = 0 

where L,, L, and t, are certain polynomials of the third order of A,, 
AZ and A,. 

For example 

L1 (AI, At, A,) = - 1.6667~0 + 9.76801 A1 - 

- 4.88400An + 2.9304A3 + (~~ (2.03175A1 - 0.5i587Ap + 0.30952Aa) + 

+ F (- 6.4266Ala - 8.71428Aa8 - 14.9619Aas - 4.4286A1A~ + 2.365iA1Aa - 

- 4.88254AgAd) + 4.603i7A3J + 13.5460314#- 4.12394A&+ 9.38095A1’AI- 4.07937APAsf 

+24.1524AS~A1+ 13.5535A$As+ 35.5832As=A1+31.6707A$A~+ 10.3365A1AzAs =0 

The expressions for L, and I., have exactly the same forms with differ- 

ent values of the numerical coefficients. 

‘Ihe functions It’,, W, and W,, given by (3. S), are such that 
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\[{ Wt&]Bj dp = 0 for i+i (3.9) 

0 0 

Therefore, the derivatives x1 and A, appear only in the fir$, the. 
derivatives x2 and A, only in the second, and the derivatives A, and A, 

only in the third of equations (3.8). 

Should there be a necessity of the fourth approximation, the function 
W, would have to be of the form 

w, = (1 - P’)’ (1 + UP” + bp’ + $9 

with the coefficients a, b and c determined from the orthogonality con- 

2 4 6 8 

Fig. 12. 

dition (3.9). 

The most tedious operation is the cal- 
culation of the coefficients of the poly- 
nomials L,, L, and L,. ‘Ihis part of the 
work, however, can be easily performed 
by computers. ‘Iherefore, in this problem 
the number of parameters Ai could have 
been increased. 

We now integrate equations (3.8). De- 

noting 

A, = 241, A, = Us, A, - u, 

we have (3.10) 

AA, = u,At, AA, = ushr, 

AA s = uaAz, Au, = (- xur - LJ AZ 

Au, = (- xu, - LJ AT 

Au, = (- xus -L,) A% 

We assme that p,, is a given function of time. let pO = I!T where K 
is a constant quantity which should be assumed sufficiently small, for 
a given problem, in order to consider the loading as static. 

The selection of K and AT can be facilitated through the estimate of 
the order of magnitude of the natural frequencies of the shell. This 
estimate can easily be obtained if the nonlinear components in the ex- 
pressions L,, L, and L, are neglected. 

In these calculations, K = 1 and AT = 0.001 have been assumed. 
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At the initial instant of time (for T = 0) 

z.+ = u2 = us = 0, A, = A, = A3 = 0 

Next, from equations (3.10) we calculate successively 

AA,, AA,, AAa, A,, A,, As, AUK, Aus, AU, etc. 

and we construct the relation between the pressure and the deflection. 

This relation is shown in Figs. 12 and 13, for H/h = 4 and H/h = 8. 

At the first critical pressure, the deflection increases rapidly 

(snap-through), accompanied by oscillations around a new position of 
equilibrium. For a fuller reproduction of the physical aspect of the 

phenomenon the linear damping has been introduced into the equations. 

‘Ihe coefficient of damping K has been selected from the point of 

instructiveness; not too large, in order to retain the oscillatory 
character of the process, and not too small, in order to damp out the 
oscillations sufficiently fast. In these calculations K = 3 has been 
assumed. 

During unloading, the reverse snapping appears, accompanied also by 

oscillations. 

The equations (3.8) have been integrated for the values H/h = 4, 6 

and 6. The critical pressures obtained are marked by points in Fig. 14. 

The same figure contains sections of the curves from the diagram in Fig. 

7. It is evident that the introduction of three parameters results in a 

sufficient accuracy of the determination of the critical Pressures. 

P, --- 
___ 

t 

30 ---- 

;=B 

200 --- 

E -JY 

6 

Fig. 13. Fig. 14. 

4. We shall consider 

the proposed method. 

now the question of the general evaluation of 
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Introducing the time factor, we obtain the single valuedness, deter- 

mined by the history of the problem, and the nonlinearity of the prob- 

lem practically does not cause any difficulties. This is evident, in 

particular, from the example of the numerical solution of equations 

(3.8). 

Without the introduction of the time factor and applying the usual 

methods to the determination of the possible forms of equilibrium, the 

same system of equations (3.8) must be considered in a different manner. 

Assuming 

&= Ak,= 1;1,=0 

we obtain the system of cubic equations 

which have to be solved with respect to “I, A, and ‘1, for various values 

of PO. With three parameters, this task becomes already more than com- 

plicated. With the number of parameters increasing, the difficulties 

grow progressively. 

‘lhe proposed method is free from this disadvantage. The introduction 

of additional terms of the expansion increases only the preparatory work, 

but does not influence the numerical solution of the equations of motion, 

because a computer easily performs the operation of integration for an 

arbitrary number of the variable parameters. 

In the proposed method, the tasks performed by a computer do not re- 

quire large amounts of machine time: the calculation of the coefficients 

in the preparation of the equations and the integration of the equations 

with initial conditions. The most difficult problem for a machine. the 

boundary value problem, is solved by the variational method. 

The scope of applicability of the method is, evidently, sufficiently 

broad. It is possible to include the problems whose solutions are deter- 

mined by the history of loading of the system: for example, the problems 

of stability of plastically deformable bodies. To this category belongs 

the analysis of structures under conditions of non-proportional loading 

and thermal effects varying in time. The method presented is applicable 

to dynamical problems, which can be solved with no more effort than the 

static problems. In this, the non-uniqueness of the solution is removed 

by the continuous history of the development of the process. 

Finally, of great importance is the fact that in the solution of 

practical problems the investigator is not bound in advance by a de- 
finite criterion of stability. The behavior of a structure in time may 

be controlled and evaluated in many different ways. In the course of 
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analysis, the limit state may be assumed as the state corresponding to 

the appearance of plastic deformations, or the state corresponding to 

fast increasing displacements, or the state corresponding to the ulti- 

mate loading capacity when the deformations increase at decreasing load- 
ing, etc. 

The strong and the weak points of the method reveal themselves 

further in the course of solution of specific problems. 
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